Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the delta18O of water vapour in Pacific Northwest coniferous forests.

نویسندگان

  • Chun-Ta Lai
  • James R Ehleringer
  • Barbara J Bond
  • Kyaw Tha Paw U
چکیده

Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (delta 18O) as high as 4% per hundred were observed for water vapour (delta (18)Ovp) above and within an old-growth coniferous forest in the Pacific Northwest region of the United States. Values of delta 18Ovp decreased in the morning, reached a minimum at midday, and recovered to early-morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2-d period by considering the 18O-isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do delta 18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of delta 18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O-isoflux in the morning of day 1, causing values of delta 18Ovp, to decrease. An isotopically enriched 18O-isoflux resulting from transpiration then offset this decreased delta 18Ovp later during the day. Contributions of 18O-isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H2(16)O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas-fir trees as approximately 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non-steady state model for predicting delta 18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of transpiration. The impact of this increase on the modelled delta 18Ovp was clearly detectable, suggesting the importance of considering isotopic non-steady state of transpiration in studies of forest 18O water balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O of water vapour in Pacific Northwest coniferous forests

Changes in the 2 H and 18 O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio ( δ 18 O) as high as 4‰ were observed for water vapour ( δ 18 O vp ) above and within an old-growth coniferous forest in the Pacific Northwest region of the United States. Values o...

متن کامل

Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.

During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of tra...

متن کامل

Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor

The relative contributions of overstory and understory plant transpiration and soil evaporation to total evapotranspiration (ET) in a semiarid savanna woodland were determined from stable isotope measurements of atmospheric water vapor. The savanna overstory was dominated by the deeply rooted, woody legume Prosopis velutina (“mesquite”), and the understory was dominated by a perennial C4 grass,...

متن کامل

deltaO of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy.

Stable isotopes in water have the potential to diagnose changes in the earth's hydrological budget in response to climate change and land use change. However, there have been few measurements in the vapour phase. Here, we present high-frequency measurements of oxygen isotopic compositions of water vapour (delta(v)) and evapotranspiration (delta(ET)) above a soybean canopy using the tunable diod...

متن کامل

Impact of Leaf Traits on Temporal Dynamics of Transpired Oxygen Isotope Signatures and Its Impact on Atmospheric Vapor

Oxygen isotope signatures of transpiration (δ E ) are powerful tracers of water movement from plant to global scale. However, a mechanistic understanding of how leaf morphological/physiological traits effect δ E is missing. A laser spectrometer was coupled to a leaf-level gas-exchange system to measure fluxes and isotopic signatures of plant transpiration under controlled conditions in seven di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant, cell & environment

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2006